skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davies, Sami"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bringmann, Karl; Grohe, Martin; Puppis, Gabriele; Svensson, Ola (Ed.)
    This paper considers correlation clustering on unweighted complete graphs. We give a combinatorial algorithm that returns a single clustering solution that is simultaneously O(1)-approximate for all 𝓁_p-norms of the disagreement vector; in other words, a combinatorial O(1)-approximation of the all-norms objective for correlation clustering. This is the first proof that minimal sacrifice is needed in order to optimize different norms of the disagreement vector. In addition, our algorithm is the first combinatorial approximation algorithm for the 𝓁₂-norm objective, and more generally the first combinatorial algorithm for the 𝓁_p-norm objective when 1 < p < ∞. It is also faster than all previous algorithms that minimize the 𝓁_p-norm of the disagreement vector, with run-time O(n^ω), where O(n^ω) is the time for matrix multiplication on n × n matrices. When the maximum positive degree in the graph is at most Δ, this can be improved to a run-time of O(nΔ² log n). 
    more » « less
  2. Naor, Joseph; Buchbinder, Niv (Ed.)
    In the problem of scheduling with non-uniform communication delays, the input is a set of jobs with precedence constraints. Associated with every precedence constraint between a pair of jobs is a communication delay, the time duration the scheduler has to wait between the two jobs if they are scheduled on different machines. The objective is to assign the jobs to machines to minimize the makespan of the schedule. Despite being a fundamental problem in theory and a consequential problem in practice, the approximability of scheduling problems with communication delays is not very well understood. One of the top ten open problems in scheduling theory, in the influential list by Schuurman and Woeginger and its latest update by Bansal, asks if the problem admits a constant-factor approximation algorithm. In this paper, we answer this question in the negative by proving a logarithmic hardness for the problem under the standard complexity theory assumption that NP-complete problems do not admit quasi-polynomial-time algorithms. Our hardness result is obtained using a surprisingly simple reduction from a problem that we call Unique Machine Precedence constraints Scheduling (UMPS). We believe that this problem is of central importance in understanding the hardness of many scheduling problems and we conjecture that it is very hard to approximate. Among other things, our conjecture implies a logarithmic hardness of related machine scheduling with precedences, a long-standing open problem in scheduling theory and approximation algorithms. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)